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ABSTRACT

In numerous real-world domains, spanning from environmental
monitoring to long-termmedical studies, observations do not arrive
in a single batch but rather over time in episodes. This challenges the
traditional assumption in causal discovery of a single, observational
dataset, not only because each episode may be a biased sample
of the population but also because multiple episodes could differ

in the causal interactions underlying the observed variables. We
address these issues using notions of context switches and episodic
selection bias, and introduce a framework for causal modeling
of episodic data. We show under which conditions we can apply
information-theoretic scoring criteria for causal discovery while
preserving consistency. To in practice discover the causal model
progressively over time, we propose the Continent algorithm
which, taking inspiration from continual learning, discovers the
causal model in an online fashion without having to re-learn the
model upon arrival of each new episode. Our experiments over a
variety of settings including selection bias, unknown interventions,
and network changes showcase that Continent works well in
practice and outperforms the baselines by a clear margin.

CCS CONCEPTS

•Mathematics of computing→ Causal networks; Informa-

tion theory; • Theory of computation→ Online algorithms.
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1 INTRODUCTION

Determining causality is of fundamental interest throughout the
sciences [30]. As controlled experiments are often not feasible, the
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Figure 1: Cause 𝑋1 and effect 𝑋2 [29] measured in episodes

over time (𝐸1-𝐸4). Each episode comes from an underlying

season (𝑆+, 𝑆−), and an unknown context, here Switzerland.

question of how to do so given observational data alone is gaining
increased attention. Classical algorithms for discovering causal
networks assume as their starting point a single, homogeneous
dataset sampled from a single, stationary distribution [6, 30, 39].

However, a more realistic setting is one where we obtain obser-
vations in batches over time. Not only does this mean that we need
to learn and update our causal hypothesis over time, but each batch
likely contains samples from a specific time period or subpopulation,
resulting in a biased distribution. Even the collective data distribu-
tion over all such episodes is often not identically distributed since
the causal interactions could differ across domains.

To motivate the episodic setting and illustrate its challenges, con-
sider an example in environmental monitoring where we measure
two markers 𝑋1: temperature and 𝑋2: ozone concentration at differ-
ent times of the year. Suppose we obtain monthly measurements,
resulting in episodes {𝐸1, ...𝐸4} at timepoints {𝑡1, ...𝑡4} as shown
in Fig. 1. In our example taken from the Tübingen cause-effect
pairs [29], 𝑋1 is considered the cause of 𝑋2 and the overall data
suggest a roughly linear trend of the causal mechanism relating
them. Considering a winter month such as 𝐸1 (blue) on its own
would however suggest that both variables are uncorrelated. Only
when including the summer month 𝐸3 (yellow) do we obtain a com-
plete picture. In this example, there is a high-temperature season 𝑆+
(circle) as well as a low-temperature season 𝑆− (star), and episodes
coming from only one such season offer a biased picture.

This simplistic example suggests that combining all episodes is
a good practice to remove seasonal bias. This however can lead to
its own set of issues. Consider a dataset that stems from a differ-
ent geographical region or context, where due to local measuring
devices noise levels are different, or even the underlying causal
relationship changes. For instance, a phenomenon known as ozone
suppression [42] creates a situationwhere ozone levels are no longer
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positively correlated with temperature. As ozone suppression only
occurs above a certain temperature threshold, it is not visible in
the data obtained in Switzerland shown in Fig. 1 but could affect
a dataset 𝐸5 from a region with exceptionally high temperatures.
Overall, whereas episodes 𝐸1 − 𝐸4 should be combined to remove
seasonal bias, combining samples from different contexts 𝐸1 − 𝐸5
obscures context-specific causal relationships [44].

While recent work in causal discovery considers different con-
texts [28, 40, 44], it neither addresses episodes nor allows for struc-
tural changes in the causal model across contexts. In contrast, we
propose a causal modeling framework for episodes with selection
bias where an unknown number of causal networks underlie the
data-generating process. We show that in principle, we can use a
consistent scoring criterion for causal discovery in this setting so
long as we observe sufficiently many episodes.

From a practical perspective, existing algorithms for causal dis-
covery [6, 27, 30] start from a single batch of data and hence would
need to relearn the causal model whenever a new episode arrives.
This is clearly computationally impractical; rather, it would be de-
sirable for a domain expert to gain preliminary insights into the
causal relationships based on some earlier episodes and perenially
update these as new data becomes available.

Given these limitations, we develop the Continent algorithm
for discovering causal models over episodic data, more specifi-
cally multiple fully directed causal networks over a set of contexts.
Taking inspiration from continual learning, we hereby avoid fully
re-learning the causal model upon the arrival of each episode but
learn it in an online fashion. We propose a strategy to update
the causal hypothesis as new episodes arrive, using distribution
matching and an information-theoretic perspective of causality,
and show that our updating strategy is consistent. We show in
experiments that Continent discovers causal networks reliably
from data with episodic selection bias, under interventions, as well
as with structural changes in causal networks. Not only does it
compare favorably to its competitors, but only Continent is able
to learn the causal model adaptively over time. It can also address
an experimental setting where we assign a new, unseen episode to
one of the causal networks inferred from previous episodes.

Contributions. To summarize our main contributions, we

• introduce a causal modeling framework for episodic data,
• show under which conditions we can use an information-
theoretic consistent scoring criterion to identify a set of
causal networks underlying such data,
• develop the practical approach Continent to learn such
causal networks in a continual fashion,
• confirm in experiments that Continent works in practice.

We structure our exposition according to the above, first introduc-
ing notation and preliminaries, then introducing our causal model
and practical algorithm, and concluding with an experimental eval-
uation and discussion.

2 PRELIMINARIES

First, we outline our problem setting and review causal modeling
techniques for independent and identically distributed (i.i.d.) data.

2.1 Notation and Problem Setting

Throughout our work, we consider a batch setting where we ob-
tain observations as a sequence of datasets {𝐸0, . . . , 𝐸𝑁 } at time-
points {𝑡0, . . . , 𝑡𝑁 }, and refer to dataset 𝐸𝑖 at time 𝑡𝑖 as an episode.
We denote the dataset that combines all episodes up to time 𝑡𝑖 as
𝐷𝑁 = ∪𝑁

𝑖=1𝐸𝑖 . In each episode, we observe a fixed set of continuous
random variables 𝑋 = {𝑋1, . . . , 𝑋𝑀 } with distribution 𝑃 (𝑋 ).

Episodes can belong to different domains or environments, which
we call contexts denoted by {𝐶0, . . . ,𝐶𝑅}. Each episode 𝐸𝑖 is a mem-
ber of a unique context 𝐶𝑟 , which we write as 𝐶 (𝐸𝑖 ), and we write
𝑋𝑟 , 𝑃𝑟 to refer to variables, resp. distributions, in the 𝑟 th context.
Novel to our work is that we neither know how many contexts 𝑅
exist nor which context 𝐶 (𝐸𝑖 ) each episode comes from.

In addition to coming from different contexts, episodes are not
necessarily i.i.d. but rather could preferentially include samples
from a certain subpopulation 𝑆 . To illustrate, consider the warm
season 𝑆+ in Fig. 1. Episode 𝐸3 exhibits selection bias in that it
only includes i.i.d. samples from this season. We can represent 𝑆+
through a binary variable 𝑆 with values 𝑆 = ◦, 𝑆 = ∗, with the
interpretation that samples 𝑆 = ◦ are observed, 𝑆 = ∗ are missing
from 𝐸3, so that it follows a biased distribution. In general, we
consider a categorical variable 𝑆 with values {𝑠1, . . . , 𝑠𝐾 } modeling
subpopulations of 𝑃 (𝑋 ), so that each episode results from selecting
an unknown population 𝑠𝑘 and sampling from 𝑃 (𝑋 | 𝑆 = 𝑠𝑘 ). As
we could obtain multiple episodes from the same subpopulation,
for example repeated monthly episodes over multiple years, we do
not assume the number 𝐾 ≤ 𝑁 to be known a priori.

In this episodic setting, we want to discover how many and
which causal models there are.

Problem Statement (Informal). Given datasets {𝐸0, . . . , 𝐸𝑁 }
where each episode 𝐸𝑖 is generated from the causal model in an un-

known context 𝐶𝑟 and by conditioning on an unknown value 𝑠𝑘 of 𝑆 ,

we want to discover the set of causal models over 𝑋 .

Before we address this problem, we take a step back to address
causal discovery in an i.i.d. setting and introduce the concepts and
assumptions that we build on.

2.2 Causal Discovery

For now, consider the case of a single context without selection bias.
We can specify a causal model over the variables 𝑋 by a directed
acyclic graph (DAG)𝐺 = (𝑋, 𝐸) with node set𝑋 and edges (𝑖, 𝑗) ∈ 𝐸
whenever the variable 𝑋𝑖 is a cause of 𝑋 𝑗 [30]. To denote the set
of direct causes of 𝑋 𝑗 we write pa𝑗 where we leave 𝐺 implicit.
Together with the network structure in 𝐺 , we assume a structural
causal model over the variables, where each effect is generated from
its causes through a causal function or mechanism 𝑓𝑗 ,

𝑋 𝑗 = 𝑓𝑗 (pa𝑗 , 𝑁 𝑗 )

where 𝑁 𝑗 is a noise variable implicit in 𝐺 with 𝑁 𝑗 ⊥⊥ 𝑋 𝑗 .
A causal model is identifiable when we can determine it uniquely

from an observational distribution [30]. In general, identifiability
of the causal DAG 𝐺 is only possible under additional assumptions.
Hence, we assume causal sufficiency, which states that no latent
variable jointly causes any of the observed variables, as well as the
causal Markov and faithfulness conditions, which together imply
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that edge separations in the graphical model 𝐺 correspond to inde-
pendence constraints in the observed distribution 𝑃 . Under these
assumptions, it is well known that identifiability holds up to the
Markov Equivalence Class (MEC) of 𝐺 [10].

Identification of causal directions beyond the MEC is possible
using additional information about how the system reacts to inter-
ventions [11, 22, 44]. In the absence of such information, we need to
make additional assumptions, such as restricting the functional de-
pendencies 𝑓 to nonlinear functions with additive noise [5, 12, 25].
As an example of this approach, a family of methods build on the
algorithmic framework of causation [14] and derive consistent scor-
ing criteria that can be used for causal discovery within a given
class of functional models. This is the approach we will follow here.

2.3 Information-theoretic Causal Discovery

The algorithmic model of causation [14] reasons about the complex-
ity of causal mechanisms in describing the observed data. To this
end, it uses the concept of Kolmogorov complexity. Kolmogorov
complexity defines, for binary strings 𝑥 ∈ {0, 1}∗, the length 𝐾 (𝑥)
of the shortest binary program 𝑥∗ that outputs 𝑥 and halts. The Kol-
mogorov complexity 𝐾 (𝑃) over a distribution 𝑃 defines the length
of the shortest program 𝑝∗ that approximates 𝑃 up to precision 𝑞
on a universal Turing machineU given input ⟨𝑥, 𝑞⟩ [18],

𝐾 (𝑃) = min
𝑝∗∈{0,1}∗

{|𝑝∗ | : U⟨𝑥, 𝑞⟩ − 𝑃 (𝑥) | ≤ 1
𝑞 } .

Using Kolmogorov complexity, we can state the centerpiece of
the algorithmic view of causal networks, namely the Algorithmic
Markov Condition (AMC) [14].

Algorithmic Markov Condition. The AMC postulates that causal
mechanisms correspond to programs that encode the observed
distributions most concisely in terms of Kolmogorov complexity.
More precisely, it assumes that each causal mechanism 𝑓𝑗 for a
given 𝑋 𝑗 can be described by a program 𝑝 𝑗 that independently
generates the distribution 𝑃 (𝑋 𝑗 | pa𝑗 ). The AMC posits that the
complexity of the overall distribution 𝑃 (𝑋 ) corresponds to the
summed complexities over these independent programs,

𝐾 (𝑃 (𝑋 )) +=
𝑀∑︁
𝑗=1
𝐾
(
𝑃 (𝑋 𝑗 | pa𝑗 )

)
(1)

which holds up to a constant, i.e. the complexities can differ by that
of a program with constant length.

Causal Discovery using the AMC. Kolmogorov complexity cannot
be computed for arbitrary programs [18], but can be approximated
from above via Minimum Description Length (MDL) [9] for a fixed
model class. Eq. (1) is therefore commonly stated for a flexible class
of functions, such as non-parametric regression models.

In detail, MDL defines a description length 𝐿 of 𝑋 together with
its optimal causal model 𝐺∗, given by

𝐿(𝑋 ;𝐺∗) = 𝐿(𝐺∗) +
∑︁

𝑋 𝑗 ∈𝐺∗
(𝑋 𝑗 | pa𝑗 ,𝐺∗) . (2)

The score 𝐿(𝑋 ;𝐺) is given by the length, in bits, of first encoding
the model itself and then encoding the data under the model. Specif-
ically, 𝐿(𝐺) encodes the network structure of 𝐺 and the functional
relationships 𝑓𝑗 using a model class of choice with MDL score 𝐿(𝑓𝑗 ).

The remaining term poses according to the causal factorization
and describes each variable 𝑋 𝑗 from its causal parents pa𝑗 . Using 𝐿,
Eq. (1) suggests estimating the causal model as the one minimizing
the overall description length 𝐿(𝑋 ;𝐺).

Various instantiations of 𝐿 exist, addressing, for example, the
bivariate [24] and multivariate case [27], latent confounding [16],
and interventional data [21, 22, 26]. Throughout this work, we
assume a given score 𝐿 that decomposes as in Eq. 2 and is consistent
in the sense that it allows estimating a DAG𝐺 ∼ 𝐺∗ that is Markov
equivalent to 𝐺∗ in the limit, lim𝑛→∞ 𝑃 (𝐺 ∼ 𝐺∗) = 1 for i.i.d. data
with sample size 𝑛. We refer to Mian et al. [27] for definitions of 𝐿
in a multivariate setting and a consistent algorithm for discovering
𝐺 in from an i.i.d. data distribution. As consistency results and
practical algorithms have only been explored in the i.i.d. case [27]
or interventional data [22, 26], we turn to episodic data here.

3 THEORY

In this section, we introduce our causal model for episodic data.

3.1 Causal Model

Our causal model comprises a set of causal DAGs G = {𝐺1, . . . ,𝐺𝑅}
over a common set of variables 𝑋 ∪ {𝑆}, where 𝑋 are measured,
continuous random variables of interest, and 𝑆 is an unmeasured
categorical variable with values 𝑆 = {𝑠1, . . . , 𝑠𝐾 }. Each DAG 𝐺𝑟 is
a causal model over 𝑋𝑟 , i.e., it describes the causal relationships
in all episodes from a given context 𝐶𝑟 . The additional variable 𝑆
models that certain observations may be missing in each episode.

To do so, we extend upon a missingness framework commonly
used to handle selection bias [2, 35]. To explain, consider the 𝑛th
observation, where we represent 𝑆 using a one-hot encoding,(

𝑋
(𝑛)
1 , . . . , 𝑋

(𝑛)
𝑀

, 𝑠
(𝑛)
1 , . . . , 𝑠

(𝑛)
𝐾

)
where we suppress the dependency on the context to avoid clutter.
Above, 𝑋 (𝑛) is associated to indicators 𝑠𝑘 where 𝑠𝑘 = 1 if 𝑋 (𝑛) is
observed, else 𝑠𝑘 = 0 if it is missing in a distribution 𝑘 . We obtain 𝐾
biased distributions 𝑃 (𝑋 | 𝑆 = 𝑠𝑘 ) of which episodes are subsamples.
Exactly which samples are observed could depend on 𝑋 ; in Fig. 1,
for instance, 𝑆+ = ◦ holds for the temperature range 𝑋1 ≥ 10. In
general, we assume that any unknown mechanism assigns 𝑆 ,

𝑆 = 𝑔(𝑋, 𝑁𝑠 ), 𝑁𝑠 ⊥⊥ 𝑆 ,

where 𝑔 maps each sample to an assignment of 𝑆 using input 𝑋 ,
which is noisy through 𝑁𝑠 . We therefore include 𝑆 in the causal
model together with edges 𝑋 𝑗 → 𝑆 for all 𝑋 𝑗 , and assume that 𝑆 is
a sink node. We include a node 𝑆𝑟 in𝐺𝑟 in each𝐶𝑟 with the same 𝐾
for simplicity, although our framework can be extended to include
a dependency 𝐾𝑟 . We assume causal sufficiency over 𝑋𝑟 ∪ {𝑆}.

To summarize, our causal model is the following.

Assumption 3.1 (Causal model with contexts and selection). Our
causal model is given by a set of DAGs G = {𝐺1, . . . ,𝐺𝑅} over
𝑋 ∪ {𝑆} from a finite number of contexts 𝑅 such that in context𝐶𝑟 ,
each observed variable 𝑋 𝑗 is generated as

𝑋𝑟𝑗 = 𝑓
𝑟
𝑗 (pa

𝑟
𝑗 , 𝑁

𝑟
𝑗 ), 𝑁 𝑟𝑗 ⊥⊥ 𝑋

𝑟
𝑗 ,
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where pa
𝑟
𝑗
denote the causal parents of 𝑋𝑟

𝑗
in 𝐺𝑟 and 𝑁 𝑟

𝑗
is an

independent noise term. The latent variable 𝑆 is generated as

𝑆𝑟 = 𝑔𝑟 (𝑋𝑟𝑗 , 𝑁
𝑟
𝑠 ), 𝑁 𝑟𝑠 ⊥⊥ 𝑆𝑟 .

The above describes an unbiased generating process where each
variable 𝑋 𝑗 is a function of its causal parents pa𝑗 and noise 𝑁 𝑗 .

In addition, the mechanism 𝑔 with noise 𝑁𝑠 generates 𝑆 . This
generating process happens independently in each context.

We assume that episodes result from conditioning on a specific
value of the unobserved selection variable.

Assumption 3.2 (Episodic data). Under the causal model in As-
sumption 3.1, after generating an unbiased distribution 𝑃𝑟 (𝑋, 𝑆)
from the DAG 𝐺𝑟 in each context 𝐶𝑟 , all episodes 𝐸 coming from
context 𝐶 (𝐸) = 𝐶𝑟 have distribution 𝑃𝑟 (𝑋 | 𝑆 = 𝑠𝑘 ) for some
specific 𝑠𝑘 ∈ {𝑠1, . . . , 𝑠𝐾 }.

With no assumption on the selection mechanism 𝑔, number of
contexts 𝑅, or number of selection regions 𝐾 , our model can en-
compass general cases of episodic data. This invariably also makes
it more challenging to discover the causal model from data. To do
so, we first state the algorithmic Markov condition for our model.

Postulate 3.3 (Algorithmic Markov Condition). Under Assump-

tions 3.1 and 3.2, a set of causal DAGs G = {𝐺1, . . . ,𝐺𝑅} is only
admissible as the causal hypothesis over 𝑋 and 𝑆 if

𝐾
(
𝑃
(
𝑋 ∪ {𝑆}

) ) +
=

𝑅∑︁
𝑟=1

𝑀∑︁
𝑗=1

𝐾
(
𝑃𝑟 (𝑋 𝑗 | pa𝑗 )

)
+ 𝐾 (𝑃𝑟 (𝑆 | 𝑋 ))

+
= 𝐾

(
𝑃 (𝑋 )

)
+ 𝐾

(
𝑃 (𝑆 | 𝑋 )

)
where

+
= holds up to an additive constant.

As 𝑆 is not included in any parent set, we can in principle consider
the complexity of, and hence causal structure over, 𝑋 independently

of the complexity of 𝑆 . This motivates the idea of using a consistent
scoring criterion to find the causal structure over 𝑋 in each context.

As a complication, we hereby need to discover the number of
contexts. Supposewe obtained data𝐷𝑛 accumulated over𝑛 episodes.
There could be any number 𝑅 of different causal models, with 1 ≤
𝑅 ≤ 𝑛. Thus, we need to consider any partition of our samples into
𝑅 disjoint sets, which we write as Π(𝐷𝑛) = {𝑋 1, . . . 𝑋𝑅}. In each
set, we propose discovering the causal DAG using the consistent
score 𝐿(𝑋𝑟 ;𝐺), and overall find the partition minimizing this score.

To summarize, our objective is as follows.
Problem Statement. Given variables 𝑋 and data 𝐷𝑛 over 𝑛

episodes, we aim to discover the partition Π(𝐷𝑛) of 𝐷𝑛 into contexts

and the causal model 𝐺𝑟 in each context minimizing

min
Π (𝐷 )

|Π (𝐷 ) |∑︁
𝑟=1

min
𝐺𝑟

𝐿(𝑋𝑟 ;𝐺𝑟 ) . (3)

where we write 𝑋𝑟 for the data in the 𝑟 -th set of Π(𝐷).
This leaves us with two questions; first, ensuring that the above

is a consistent way of identifying the causal model, and second,
how to efficiently minimize it in practice.

3.2 Asymptotic Guarantees

We first want to establish conditions under which 𝐿 can be used in
a consistent way to discover the causal DAGs in all contexts.

This revolves around whether the biased distributions in each
episode eventually allow us to estimate the relevant distributions
in Postulate 3.3 in an unbiased way so that we can apply Eq. (3).
That is, estimation of each causal mechanism should not depend on
the selection variable. We hence make the following assumption.

Assumption 3.4 (Ignorability). Under the causal model in As-
sumption 3.1 and given 𝐷𝑁 over 𝑁 episodes, in each context 𝐶𝑟 ,
we assume the following ignorability of selection bias,

𝑋𝑟𝑗 ⊥⊥ 𝑆
𝑟 | Z𝑟

for each 𝑋𝑟
𝑗
and conditioning set Z𝑟 ⊆ 𝑋𝑟 \ {𝑋 ,

𝑗
𝑆𝑟 }.

Examples of when the above holds are cases known as Missing
At Random (MAR) or Missing Completely At Random (MCAR)
[2, 3, 35], for example, when a biased 𝑃 (𝑋 | 𝑆 = 𝑠𝑘 ) is a uniform
sample from the population 𝑃 (𝑋 ). A more realistic case is the one
in Fig. 1 where the selection mechanism depends on temperature
𝑋1. We can see that episodes from the cold season 𝑃 (𝑋 | 𝑆 = ∗)
indeed do not allow an unbiased view of the causal mechanism,
however once we obtain enough episodes from both 𝑆−, 𝑆+ then
ignorability holds. More generally, we ensure via Assumption 3.4
that we eventually obtain enough samples from the support of 𝑋 .

With this, we can show that an MDL-based score 𝐿 can be used
for causal discovery with unknown contexts.

Theorem 3.5 (Consistency of 𝐿 in the episodic setting). For the

causal model in Assumption 3.1 and given data 𝐷𝑛 over 𝑛 episodes as

in Assumption 3.2, under Assumption 3.4, a consistent scoring criterion

𝐿 that decomposes as in Eq. 2 remains consistent,

lim
|𝐷𝑛 |→∞

𝑃 (𝐺𝑟 ∼ 𝐺∗𝑟 ) = 1 for all 𝑟 ∈ {1, . . . , 𝑅} .

However, this does notmake it obvious how to apply 𝐿 in practice.
First, note that the result relies on enough episodes being observed
so that selection is ignorable, that is, we did not yet address how
to deal with non-ignorable selection at each time point when we
only observed a subset of episodes. Second, even when observing
enough episodes, searching over the space of DAGs to minimize 𝐿
as in Eq. 3 is prohibitive even for a single causal model due to the
super-exponential search space over DAGs [6]. While there exist
greedy algorithms to do so, such as the MDL-based Globe, applying
such methods to any partition of the data with an unknown number
of contexts is not favorable as it could violate the i.i.d. assumption
required for these methods. To address these issues, we propose an
algorithm for causal discovery over episodic data in the following.

4 ALGORITHM

In this section, we introduce our algorithm Continent.

4.1 Overview

To motivate our algorithm setup, let us revisit our motivating ex-
ample in Fig. 1 showing episodes obtained in winter 𝐸1, spring 𝐸2,
summer 𝐸3, and autumn 𝐸4. We consider a fixed number of seasons,
here 𝑆+, 𝑆− . All episodes 𝐸1-𝐸4 shown come from a context 𝐶1 but
any number of future episodes could arrive from a different 𝐶2.
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Algorithm 1: Continent (𝐸,A,T)
input : episodes 𝐸 arriving over time, residual test T ,

causal discovery algorithm A with score 𝐿
output : causal model G = {𝐺1, ...𝐺𝑅}

1 G← {}
2 𝜏 ← 0
3 while a new episode 𝐸𝑖 arrives do

4 G← Update (G, 𝐸𝑖 ,A,T)
5 𝜏 ← 𝜏 + 1
6 if 𝜏 ≥ 𝜏max then

7 G← Merge (G,A,T)
8 𝜏 ← 0
9 end

10 end

11 G← Merge (G,A)
12 return G

Given a learnerA for greedy DAG search with a consistent scor-
ing criterion 𝐿, we aim to discover the underlying causal DAG 𝐺1
over 𝐸1-𝐸4, and possibly add a causal model 𝐺2 if future episodes
from a different 𝐶2 arrive. Applying A to all episodes at each time
point is not only impractical, but may also not be consistent given
that selection bias is not ignorable until all episodes arrive. In-
stead, we propose an algorithm Continent that maintains plau-
sible causal models G = {𝐺1, . . . ,𝐺𝑅} at each time 𝑡𝑖 and uses a
strategy for updating G when a new episode 𝐸𝑖+1 arrives.

Model Updating. In our example, say that we obtained episodes
𝐸1-𝐸3 and the current causal model is G = {𝐺1}. As we already
observed episodes from both seasons 𝑆+ resp. 𝑆− we likely already
learned an unbiased model 𝐺1. As the autumn episode 𝐸4 arrives,
we want to assign it to 𝐺1 without re-learning the causal model
from scratch. To this end, we propose using a two-sample testing
procedure T to decide whether a given episode matches an existing
causal model. Here, after checking with T that 𝐸1-𝐸4 can be stacked
we combine the data 𝐸1-𝐸4 and keep the model 𝐺1 as is.

On the other hand, say episode 𝐸5 from a different context 𝐶2
arrives1 and T decides that it does not match any current causal
model. Then we apply the learner A to learn a new model 𝐺2 over
𝐸5 and add it to our set of models, G = {𝐺1,𝐺2}.

Note that the above assumes that we already learned an unbiased
causal model over the available episodes. We also need to consider
the case where a causal model is biased, such that we need to update
it after merging data from multiple episodes.

Model Merging. Say that we observed episodes 𝐸1-𝐸2 to learn
a causal model 𝐺0. From the winter seasons 𝑆− alone, it appears
that 𝑋1, 𝑋2 are uncorrelated, hence 𝐺0 is biased. When 𝐸3 from
summer season 𝑆+ arrives, we need tomerge the data to the previous
episodes and learn a new model 𝐺1.

To do this, we attempt merging data over multiple episodes at
regular time intervals. We again apply T to check whether a merge
is possible, and if so, check whether merging any two causal models

1This could be e.g. readings obtained from a different geographical region where causal
mechanism between 𝑋1 and 𝑋2 is different/non-existent.

Algorithm 2: TestResidualEq (𝐺𝑟 , 𝐸𝑖 , 𝐷,T)
input : causal model 𝐺 , episode 𝐸𝑖 , data 𝐷 , residual test T
output : test result

1 foreach 𝑋 𝑗 with parent set Z in 𝐺 do

2 𝑝 𝑗 ← T .Test(𝐻0 : 𝑃𝐷 (𝑋 𝑗 | Z) ≡ 𝑃𝑖 (𝑋 𝑗 | Z);𝛼)
3 end

4 p← T .Correct({𝑝1, ...𝑝𝑀 })
5 if T .Significant(p) return True else return False

results in an improved model, judging by our score 𝐿. As stacking
may be sufficient when we already gained sufficient evidence for a
candidate model, in practice, we attempt merging at regular time
intervals using a pre-specified tolerance parameter 𝜏max.

Combining the model updating and model merging described
above, we have our proposed approach, Continent .

Continent. We show the pseudocode of Continent in Alg. 1.
We maintain a set of models G throughout, where we associate
each 𝐺 ∈ G to a dataset 𝐷 of episodes, initially empty (Line 1).

As new episodes arrive, we update G at each time step using
the Update function (Line 4). In short, it checks using hypothesis
testing whether a new episode 𝐸𝑖 matches the data 𝐷 under an
existing model, in which case we stack the datasets 𝐸𝑖 and 𝐷 ; else
we apply A to 𝐸𝑖 to discover a new model 𝐺𝑖 which we add to G.
We show our hypothesis test in Alg. 2, and Update in the appendix.

After a pre-specified number of episodes, we attempt merging
existing models (Line 7), with a tolerance parameter 𝜏 keeping
track of the time since a merge last happened (Line 8). In essence,
Merge performs pairwise comparison of models 𝐺,𝐺 ′. If appro-
priate, it learns a new model 𝐺∪ after pooling the resp. datasets
𝐷,𝐷′ of the pair. During the algorithm, we only allow such a merge
if T marks the residual distributions of 𝐷,𝐷′ as compatible, for
which we again apply our hypothesis test in Alg. 2. We include the
pseudocode for Merge in Appendix B.

Our alternation of updating and merging continues as long as
new episodes arrive. We conclude with a final merge (Line 11).
Compared to merge steps throughout our algorithm which we
protect by T , we consider all remaining possible merges of model
pairs𝐺,𝐺 ′ in this step given that no more episodes arrive (Line 11).

4.2 Consistency

Naturally, we want to make sure that our adaptive strategy is con-
sistent. At any time point 𝑡𝑖 , however, we only have access to a
subset of the episodes so that ignorability in Assumption 3.4 un-
likely holds, and hence any causal model inferred using A may be
incorrect. Nevertheless, we need to avoid merging episodes with
different underlying models. We now show that we can do so with-
out knowing the true models. To do so, we assume a hypothesis
test T testing

𝐻0 : 𝑃1 (𝑋 𝑗 | Z) ≡ 𝑃2 (𝑋 𝑗 | Z)

for a given variable 𝑋 𝑗 , conditioning set Z and two datasets 𝑃1, 𝑃2.
Given any causal DAG, we test 𝐻0 for each variable given its es-
timated parent set and include a multiple testing correction, as
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shown in Alg. 2. We can show that our updating strategy protected
by this test is consistent under the following condition.

Assumption 4.1 (Detectable selection). We assume that selection
detectable for a variable 𝑋 𝑗 and pair of contexts 𝐶𝑟 ,𝐶′𝑟 meaning

𝑃𝑟 (𝑋 𝑗 | pa𝑗 ) ≠ 𝑃𝑟
′
(𝑋 𝑗 | pa𝑗 )

⇒ 𝑃𝑟 (𝑋 𝑗 | pa𝑗 , 𝑆 = 𝑠𝑘 ) ≠ 𝑃𝑟
′
(𝑋 𝑗 | pa𝑗 , 𝑆 = 𝑠𝑘 )

holds for each value 𝑠𝑘 of 𝑆 .

Unlike ignorability in Assumption 3.4 which requires full inde-
pendence of the causal mechanism and selection mechanism, that
is, ensures that we can estimate the causal mechanism for each
variable in a fully unbiased way, Assumption 4.1 only requires that
distribution differences of 𝑃 (𝑋 ) hold also in the biased distribution
𝑃 (𝑋 | 𝑆 = 𝑠𝑘 ). Given that the latter are subsamples of the overall
distribution, this is reasonable in practice. With this, we can show
that our updating strategy is consistent.

Theorem 4.2 (Consistency of updating using T ). With discrepancy

test T we will never merge a new episode 𝐸𝑖+1 with a set 𝑋𝑟 from an

incorrect context where 𝐶 (𝐸𝑖+1) ≠ 𝐶 (𝐸) for some 𝐸 ∈ 𝑋𝑟 .
This shows that our updating step is safe in the sense that we

always discover subsets of the correct contexts. When we observed
all episodes, we can also recover the exact sets of contexts if ignor-
ability holds, based on Thm. 3.5.

Corollary 4.3 (Consistency of Continent). Given a consistent

DAG search algorithm A and score 𝐿, under assumption 3.4 our

algorithm is consistent, so that

lim
|𝐷𝑛 |→∞

𝑃 (𝐺𝑟 ∼ 𝐺𝑟∗) = 1 for all 𝑟 ∈ {1 . . . , 𝑅}

holds after we obtain 𝑛 episodes 𝐷𝑛 and perform the merge step.

As the final step in this section, we address practical considera-
tions around our algorithm.

4.3 Instantiation

We conclude this section by giving details on the components of
Continent.

Causal Discovery Algorithm A. We assume a score-based causal
discovery algorithm A that allows discovering a causal DAG 𝐺

from an i.i.d. dataset 𝐷 . While in principle, this could be any score-
based method with a consistent scoring criterion 𝐿 decomposing
according to Eq. (2), we use anMDL-based approach in our practical
instantiation as it allows for a principled way for model comparison.
We instantiate A with Globe [27] which is an efficient algorithm
for discovering causal networks. It models causal functions through
non-parametric multivariate regression with additive noise.

Residual Test T. Our method can also work together with any
hypothesis test T for differences in conditional distributions under
a causal model. As Globe models causal functions through non-
parametric spline regression, a natural choice is testing residual
distributions under a given model for equality. As we apply a test
per each variable, we perform Bonferroni correction to obtain a
𝑝-value from the test results {𝑝1, . . . , 𝑝𝑀 }. Unless otherwise stated,
we apply the non-parametric Kolmogorov-Smirnov [1, 38] test in
our evaluations.

5 RELATEDWORK

Discovering causal models that faithfully describe the interactions
between variables of interest given observational data alone is an
actively studied problem and finds applications in almost all areas of
science. Approaches to do so typically fall into the categorizations
of constraint-based methods, such as PC [30], or score-based meth-
ods, such as GES [6, 34]. As these approaches discover a Markov
Equivalence Class (MEC) of the causal DAG [10], recent approaches
study under which assumptions we can determine causal directions
beyond the MEC. One line of work does so by constraining the
functional model [5, 33], such as LiNGAM [37] which assumes lin-
ear non-Gaussian models. Another branch of work builds on the
algorithmic model of causality [14], such as Globe [27]. However,
the examples given up to this point assume an i.i.d. data distribution
where a single causal network can capture the causal interactions,
and where neither selection bias nor contexts exist.

Selection Bias. Missingness is a well-studied problem in statistical
inference and in particular, many approaches exist for correcting
for missingness and selection bias [4, 8, 43]; see Little and Rubin
[19] for an overview. Only very recent work studies assumptions
for identifying whether selection bias holds in a given dataset [17].
Our perspective is different as we are interested in adapting causal
discovery to the presence of missingness. An important line of work
studies recoverability [3, 31] from selection bias in causal discovery,
modeled through unobserved sink node 𝑆 in the causal graph. We
also adopt this model here using multiple missingness regions, and
in addition consider the presence of multiple contexts in the form
of varying causal mechanisms.

Different Contexts. A wealth of recent literature studies causal
discovery from different environments, experimental regimes, or
contexts [13, 20, 40, 44]; prominent examples include the constraint-
based JCI framework [28], additive noise model based multi-group
Lingam [36], and score-based approaches [7, 21, 22, 26] for discov-
ering causal DAGs from multi-context data. While studies of latent
confounding in such data exist [23], latent selection remains under-
explored. In particular, existing work assumes that each context is
an identically distributed (i.i.d.) sample with fixed causal model. We
make this setting more general in that we obtain biased samples
from each context, which need to be combined to result in i.i.d. data.
To our knowledge, we are the first to allow a different causal model
with episodical bias in different contexts, and also address the algo-
rithmic challenges associated with discovering causal networks in
an online fashion.

To demonstrate how classical and environment-based causal
discovery approaches fare with episodical selection bias in practice,
we next compare them against Continent.

6 EVALUATION

Since to the best of our knowledge, there is no specific algorithm
designed for causal discovery from continually arriving episodic
data, we look at the nearest possible modifications of existing al-
gorithms for comparison. As baseline we compare to Globe [27],
Resit [33] and Ges [6, 34]. We modify these algorithms as follows
— we first learn a causal network over each individual incoming
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Figure 2: Normalized Shd and Sid [Left, Closer to origin

is better] and Orientation F1 [Right, Higher is better] for

networks learned over episodic data with selection bias.
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Figure 3: Normalized Shd and Sid [Left, Closer to origin is bet-

ter] and Orientation F1 [Right, Higher is better] for networks

learned over episodic data with unknown interventions.

episode of data, and then take a union over the edges. This is cor-
rect, under the assumption underlying each of these approaches,
that each episode comes from the same causal network [26]. We
also compare to multi-environment causal discovery approaches
such as the JCI-framework [28] using the Pc algorithm [39], as well
as Multi-Group Lingam (Lingam) [36]. The latter two approaches,
however, require that all episodes are available to learn a causal net-
work. Hence, we provide all episodes in one go to these approaches.
This constitutes an advantage as they can learn from complete data.

To measure the quality of the predicted causal structures we
use the Structural Hamming Distance (Shd) [15] , the Structural
Intervention Distance (Sid) [32], as well as the Orientation-F1 score
over learned networks. Shd counts the number of edges where the
predicted causal network differs from the true causal network, Sid
counts pairs of variables for which intervention estimation differs
across predicted resp. true causal network and the F1 score allows
us to see how accurately edges are oriented in the learned network.
Next, we discuss results over both synthetic and real-world data.

6.1 Synthetic Data

For each of the proposed experiment setups, we generate random
graphs using Erdős-Rényi model for network sizes 𝑑 = {5, 10, 15},
and generate data for effects using functions of the following form,
𝑋𝑖 =

∑
𝑥∈𝑝𝑎𝑖 𝑓 (𝑥) +N𝑖 , where 𝑓 (𝑥) is either a polynomial function

or a combination of sine and cosine functions defined over each
parent 𝑥 ∈ 𝑝𝑎𝑖 of 𝑋𝑖 , and N𝑖 is either Gaussian or Uniform. For
each graph/function combination, we generate a total of 10, 000
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Figure 5: Model Count over increasing episodes 𝑒 for data

with selection bias (left) and data with (unknown) interven-

tions (right) for graphs of size 𝑑 = {5, 10, 15}. There are 1 resp.
3 true underlying models for bias resp. intervention cases.

samples and then split them into 10 episodes of size 1000 each.
We transmit these episodes to each algorithm one at a time. After
each episode, we note the updated causal network for each of the
methods. As Jci-Pc and Lingam are provided all episodes together,
we only measure performance over the final network.

Primarily, we investigate the following questions.
Q1 Can Continent reliably discover causal networks when the

incoming episodes come from the same underlying causal
network?

Q2 How well does Continent perform when episodes contain
unknown interventions?

Q3 Can Continent identify causal networks from episodic data
containing different causal mechanisms?

Q4 How does Continent’s performance change over time as
episodes arrive?

As Continent is designed without the assumption that each
data comes from the same underlying causal network, it therefore
maintains a list of candidate networks for groups of episodes. For
comparability to other approaches, we force Continent to predict
a single causal network for cases𝑄1 and𝑄2 by taking a union over
the edges in candidate models [26]. We further provide an analysis
of the individually learned causal networks for evaluation in 𝑄3.
We release all our code and data for research purposes2. Next, we
show results for each of the four questions.

2https://eda.rg.cispa.io/prj/continent/
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Experiment Nodes Shd Sid F1

Interventions
5 0.23 0.15 0.68
10 0.25 0.34 0.54
15 0.29 0.50 0.43

Mechanism
Changes

5 0.21 0.15 0.74
10 0.26 0.38 0.64
15 0.36 0.65 0.41

Table 1: Normalized Shd [Lower is better], normalized Sid

[Lower is better] and Orientation F1 [Higher is better] for

networks predicted by Continent for held-out episodes for

interventional data as well as mechanism changes.

Q1. Identical Networks. We first test all methods on the cases
where each incoming episode comes from the same underlying
causal network, both for i.i.d. as well as selection bias. Interesting
for us is the latter where episodes can contain selection bias. We
generate this case by choosing a variable at random from our dataset
and sorting the entire data over that variable before splitting the
data into episodes and transmitting it. We show the results for this
in Fig 2 where we see that Continent shows superior performance
to the competition. Continent not only discovers causal network
structurally closer to the ground truth, but also clearly performs
well when orienting the edges as can be seen by the F1 score in
Fig. 2. This shows that Continent performs well under selection
bias. We provide the results for i.i.d. data in the appendix.

Q2. Interventions. After our sanity check using i.i.d. data and
dominant performance over data with selection bias, we level up
the difficulty by introducing episodes that contain interventions.
To do so, we generate 3 datasets. The first dataset is observational,
whereas for the other two, we select a subset of at most log2 (𝑑)
variables and perform a 𝑑𝑜-intervention [30] on that subset, before
generating the data. This gives us data sampled from three different
distributions. We further split each of these datasets into episodes
before transmitting them. We never provide information about
these interventions to any of the methods beforehand.

We show the results of this experiment in Fig. 3, where we see
that while Globe degrades slightly, Continent’s performance
does not degrade compared to the setup in𝑄1. Continent , in fact,
continues to clearly outperform the competition.

Q3. Changing Mechanisms. As the next challenging step, we in-
troduce episodes containing different causal networks/mechanisms
over the same variables. This rules out using any of our competitors
as they can not handle such data. To evaluate Continent in this
setting, we additionally generate a hold-out set of episodes that we
do not learn over. Once Continent has learned over the training
episodes, we try to predict the causal network for hold-out episodes,
without learning it explicitly, using the existing learned models.
We do so by simply taking the model that compresses this hold-out
episode best (Eq. (1)) and comparing the predicted network to the
ground truth. We show the results in Table. 1 where we observe
that Continent continues to perform well overall for 𝑑 = 5, 10,
and at least structurally for 𝑑 = 15. We see that for this challenging
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works learned Reged Lung cancer gene expression dataset.

setting with changing mechanisms, Continent can find a reason-
able skeleton (lower Shd) but conflicting mechanisms cause it to
get edge directions wrong more often (higher Sid). Nevertheless,
we see that Continent’s performance does not degrade massively
compared to previous settings, even in this challenging case.

Q4. Performance over time. We measure how the individual mod-
els present inside Continent evolve over time. To that end, we
show how the Shd (Fig. 4) as well as the model count (Fig. 5) pro-
gresses as we receive new episodes. For the case of Shd, we find that
Continent always ends up with a lower Shd at the final episode,
than the one it starts with, this effect is more profound for networks
of size 𝑑 = 15 than 𝑑 = 5 as it might be harder to identify the correct
network over a larger number of variables in the beginning. We
see that Continent is able to improve as the number of episodes
increase. For data with selection bias, we see that Continent keeps
on average 2 models throughout the learning as shown in Fig. 5.
More interestingly Continent ends up converging to almost 3
models for interventional data as shown in Fig. 5, which is exactly
the actual number of different networks present across episodes.

6.2 Lung cancer gene expression data

After measuring the efficacy of our approach using synthetic data,
we turn to (pseudo) real-world Reged dataset [41] containing 20, 000
samples over 500 variables for lung cancer gene-expressions. We
split the samples into ten non-overlapping episodes and consider
two non-overlapping networks of sizes 𝑑 = 5, 15 within the ground
truth network and run a total of 10 experiments as follows. First, we
randomly choose a subset of 5 episodes, merge them and introduce
selection bias over the stacked data akin to 𝑄2, before splitting
it back. We show the results for Reged5 in the appendix and for
Reged15 in Fig. 6 where once again Continent comes out on top.

7 DISCUSSION AND CONCLUSION

Our interest in this work is determining causality when data arrives
progressively over time in multiple episodes, each representing sub-
samples of the population or subregions of the data that need to
be pooled together to avoid bias. At the same time, we address that
the causal relationships may not be stationary over time, and treat
episodes from different contexts under a separate causal model.
To address this setting, we propose a causal model over a set of
latent contexts leading to a set of different causal networks, as well
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as model episodic bias through a hidden selection variable. We
show that information-theoretic scoring criteria remain consistent
for this model in the limit if we obtain sufficiently many episodes
so that selection bias becomes ignorable. To address the more re-
alistic setting where episodes arrive one by one over time with
non-ignorable selection bias, we propose the Continent algorithm
to learn the causal model adaptively over time. It maintains a set of
causal networks over all episodes and incorporates new episodes
into the model, using a residual testing strategy to avoid combining
episodes from different contexts.

Our experimental results show that ourmethod performs reliably
in the presence of selection bias, under unknown interventions, and
even when different causal models underlie the data-generating
process, which to our knowledge no existing methods can address.
Future directions of our work include addressing non-ignorability
further by using correction or extrapolation techniques, and ad-
dressing practical considerations such as the instantiation choices.
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A THEORY

We provide the technical details of our results in the following.
For ease of exposition, we separate out the case of a single context with one causal model in Thm. 3.5 and show it first.

Lemma A.1 (Consistency of 𝐿 for a single causal model). Assume a causal model in Assumption 3.1 with one context 𝐶 , 𝑅 = 1, and true causal
DAG𝐺∗ in𝐶 . Given data 𝐷𝑛 over 𝑛 episodes from𝐶 as in Assumption 3.2, under Assumption 3.4, a consistent scoring criterion 𝐿 that decomposes

as in Eq. 2 remains consistent,

lim
𝑛→∞

𝑃 (𝐺 ∼ 𝐺∗) = 1 .

Proof.
In the underlying causal model in assumption 3.1 with 𝑅 = 1, consider data 𝐷∗𝑛 from the true causal DAG 𝐺∗ over 𝑋 ∪ {𝑆} where 𝑆 is

observed. By consistency of 𝐿, we know that

lim
|𝐷∗𝑛 |→∞

𝑃 (𝐺∗ ∼ argmin
𝐺

𝐿(𝑋 ∪ {𝑆};𝐺)) = 1 .

Using that 𝐿 is decomposable as in Eq. 2, we can write

min
𝐺

𝐿(𝑋 ∪ {𝑆};𝐺) = min
𝐺 (𝑋,𝑆 )

(
𝐿(𝐺 (𝑋, 𝑆)) +

𝑀∑︁
𝑗=1

𝐿(𝑋 𝑗 | pa𝑗 (𝐺)) + 𝐿(𝑆 | 𝑋 )
)

= min
𝐺 (𝑋 )

(
𝐿(𝐺 (𝑋 )) +

𝑀∑︁
𝑗=1

𝐿(𝑋 𝑗 | pa𝑗 (𝐺))
)
+ min
𝐺 (𝑆 |𝑋 )

(
𝐿(𝐺 (𝑆 | 𝑋 )) + 𝐿(𝑆 | 𝑋 )

)
= min

𝐺 (𝑋 )
𝐿(𝑋 ;𝐺 (𝑋 )) + min

𝐺 (𝑆 |𝑋 )
𝐿(𝑆 ;𝐺 (𝑆 | 𝑋 ))) .

Above, we separated the graph structure 𝐺 into two subgraphs: 𝐺 (𝑋 ) over 𝑋 , and 𝐺 (𝑆 | 𝑋 ) which includes 𝑆 as well as all edges towards it.
We can do so as 𝑆 is a sink node and 𝐿 is decomposable. Hence, when 𝑆 is observed, the subgraph 𝐺 (𝑋 ) can be identified with our objective
by construction. As 𝑆 is unobserved, however, we only access data 𝐷𝑛 over 𝑛 episodes inducing a biased distribution 𝑋̃ . In that case, assume
we obtain a different minimiser 𝐺̃ = min

𝐺 (𝑋̃ ) 𝐿(𝑋̃ ;𝐺) with 𝐺̃ ≁ 𝐺
∗ and 𝐿(𝑋̃ ; 𝐺̃) < 𝐿(𝑋 ;𝐺∗). Then for at least one 𝑋 𝑗 , pa𝑗 (𝐺̃) ≠ pa𝑗 (𝐺∗).

Due to ignorabiliy in Assumption 3.4, 𝑋 𝑗 ⊥⊥ 𝑆 | Z holds for the conditioning sets Z1 = ˜pa𝑗 (𝐺̃) and Z2 = ˜pa𝑗 (𝐺∗), therefore 𝑆 does not affect
the local score for 𝑋 𝑗 given either conditioning set. That is, 𝐿(𝑋 𝑗 | ˜pa𝑗 (𝐺∗)) = 𝐿(𝑋 𝑗 | pa𝑗 (𝐺∗)) < 𝐿(𝑋 𝑗 | pa𝑗 (𝐺̃)) = 𝐿(𝑋 𝑗 | ˜pa𝑗 (𝐺̃)) , which
contradicts that 𝐺̃ is a minimizer. Therefore, we also have

lim
|𝐷𝑛 |→∞

𝑃 (𝐺∗ ∼ argmin
𝐺

𝐿(𝑋 ;𝐺)) = 1 .

□

With this, we move to our full causal model with multiple contexts. For ease of access, we restate our objective in Eq. (3),(
Π̂(𝐷),𝐺

)
= min

Π (𝐷 )

|Π (𝐷 ) |∑︁
𝑟=1

min
𝐺𝑟

𝐿(𝑋𝑟 ;𝐺𝑟 ) .

Theorem A.2 (Consistency of 𝐿 for multiple causal models). For the causal model in Assumption 3.1 and given data 𝐷𝑛 over 𝑛 episodes as in

Assumption 3.2, under Assumption 3.4, a consistent scoring criterion 𝐿 that decomposes as in Eq. 2 remains consistent,

lim
|𝐷𝑛 |→∞

𝑃 (𝐺𝑟 ∼ 𝐺∗𝑟 ) = 1 for all 𝑟 ∈ {1, . . . , 𝑅} .

Proof. First, assume the number of contexts 𝑅 and the context 𝐶 (𝐸) that each episode 𝐸 belongs to is known. That is, for the data 𝐷 = 𝐷𝑁
over all episodes, we know the true partitioning Π(𝐷) = {𝑋 1, . . . , 𝑋𝑅} into disjoint, non-empty subsets 𝑋𝑟 ⊆ 𝐷 such that ∪𝑟𝑋𝑟 = 𝐷 and
each 𝑋𝑟 is generated from a fixed causal model 𝐺𝑟 in the 𝑟 th context. Due to independent data generation from each 𝐺𝑟 , we can apply
Lemma A.1 separately in each context and obtain

lim
|𝐷 |→∞

𝑃 (𝐺∗1 , ...𝐺
∗
𝑅 ∼ min

𝐺1,...𝐺𝑅

𝑅∑︁
𝑟=1

𝐿(𝑋𝑟 ;𝐺𝑟 (𝑋 ))) = lim
|𝐷 |→∞

𝑃 (𝐺∗1 , ...𝐺
∗
𝑅 ∼ min

𝐺1,...𝐺𝑅

𝑅∑︁
𝑟=1

𝐿(𝑋𝑟 , 𝑆𝑟 ;𝐺𝑟 (𝑋 ))) = 1 .

Left to show is the case where 𝑅 and Π(𝐷) are unknown. We compare
• the true model G∗ = {𝐺∗1 , . . . ,𝐺

∗
𝑅∗ } and subsets Π∗ (𝐷) = {𝑋 ∗1, . . . , 𝑋 ∗𝑅∗ }, and

• the estimated model Ĝ = {𝐺1, . . . ,𝐺𝑅̂} and subsets Π̂(𝐷) = {𝑋 1, . . . , 𝑋 𝑅̂} minimizing Eq. 3 with score 𝐿(Ĝ) = ∑𝑅̂
𝑟=1 𝐿(𝑋𝑟 ;𝐺𝑟 (𝑋𝑟 )).

For contradiction, assume that there is no exact correspondence between the true and estimated models, more precisely, that for at least one
context 𝑟 with true model 𝑋 ∗𝑟 and 𝐺∗𝑟 there is no other 𝑟 ′ so that 𝑋𝑟

′
= 𝑋 ∗𝑟 and 𝐺𝑟 ′ ∼ 𝐺∗𝑟 . We can distinguish the following cases,
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(1) Case 𝑋 ∗𝑟 = 𝑋𝑟
′
for some 𝑟 ′ ≠ 𝑟 : then also 𝐺𝑟 ′ ∼ 𝐺∗𝑟 by Lemma A.1 as 𝑋 ∗𝑟 is a dataset from a single context 𝑟 , which however

contradicts the above assumption.
(2) Case 𝑋 ∗𝑟 ⊂ 𝑋𝑟 ′ for some 𝑟 ′ ≠ 𝑟 : Then the set 𝑋 ∗𝑟 is wrongly included under the incorrect model 𝐺𝑟 ′ . Then the decomposition of

Eq. 3 will contain a suboptimal likelihood term

𝐿(𝑋 ∗𝑟 | 𝐺𝑟 ′ ) =
𝑀∑︁
𝑗=1

𝐿(𝑋 ∗𝑟𝑗 | pa
𝑟
𝑗 (𝐺𝑟 ′ )) .

Using that 𝐿 is decomposable, we can replace the above term in the decomposition of 𝐿 as follows (keeping all other terms the same),
(a) if 𝐺∗𝑟 ∈ Ĝ, we can replace 𝐿(𝑋 ∗𝑟 | 𝐺𝑟 ′ ) with 𝐿(𝑋 ∗𝑟 | 𝐺∗𝑟 ).
(b) if𝐺∗𝑟 ∉ Ĝ, we can replace 𝐿(𝑋 ∗𝑟 | 𝐺𝑟 ′ ) with the full cost 𝐿(𝑋 ∗𝑟 ;𝐺∗𝑟 ) as the likelihood component dominates over 𝐿(𝐺∗𝑟 ) in the limit

of samples, as shown in Mian et al. [27].
In both cases, we can replace Ĝ by Ĝ ∪ {𝐺∗𝑟 } and Π̂(𝐷) by {𝑋 1, .., 𝑋 ∗𝑟 , 𝑋𝑟

′
, .., 𝑋 𝑅̂} where we separate 𝑋 ∗𝑟 and 𝑋𝑟 ′ and keep all other

parts the same, resulting in a favorable model, contradicting that it is the minimizer of Eq. 3.
(3) Case 𝑋 ⊂ 𝑋𝑟 ′ for some 𝑟 ′ ≠ 𝑟 and for a set 𝑋 ⊂ 𝑋 ∗𝑟 , 𝑋 ≠ ∅: This means that a non-empty subset of 𝑋 ∗𝑟 is included under the incorrect

DAG, in which case we can apply the same argument as in case (2).
We can disregard the case 𝑋 ∗𝑟 ∩ 𝑋𝑟 ′ = ∅ for all 𝑟 ′ as then 𝑋 ∗𝑟 is not covered by the partition.
Thus, 𝑅 = 𝑅∗ and each 𝑋𝑟 = 𝑋 ∗𝑟 and 𝐺𝑟 ∼ 𝐺𝑟 (up to permuting the indices). □

Next, we justify our updating and merging strategy in the presence of selection bias.

Theorem A.3 (Consistency of model updating using T ). Given a set of causal DAGs Ĝ = {𝐺1, . . . ,𝐺𝑅̂} and subsets Π̂(𝐷) = {𝑋
1, . . . , 𝑋 𝑅̂}

over episodes ∪𝑟𝑋𝑟 = {𝐸1, . . . , 𝐸𝑖 }. With discrepancy test T we will never merge a new episode 𝐸𝑖+1 with a set 𝑋𝑟 from an incorrect context.

Proof. We need to show that with a merge protected by T , a merge of 𝐸𝑖+1 with any set 𝑋𝑟 can only occur if 𝐶 (𝐸𝑖′ ) = 𝐶 (𝐸𝑖+1) for all
𝑖′ ≤ 𝑖 . For induction on the time step 𝑖 , consider the following cases,

(1) For the base case is 𝑖 = 2, assume 𝐶 (𝐸1) ≠ 𝐶 (𝐸2). We need to show that T never merges 𝐸1, 𝐸2 from 𝐶1,𝐶2 From our causal model,
we know there is at least one variable in 𝐺∗1 ,𝐺

∗
2 s.t.

𝑃 (𝑋 1
𝑗 | pa

1
𝑗 ) ≠ 𝑃 (𝑋

2
𝑗 | pa

2
𝑗 )

From Cor. 4.5 in MSS, this implies that also for any conditioning set Z,

𝑃 (𝑋 1
𝑗 | Z

1) ≠ 𝑃 (𝑋 2
𝑗 | Z

2)

that is, we have a distribution shift even when A discovers an incorrect DAG 𝐺1. Left to show is that it holds also for the biased
distributions

𝑃 (𝑋 1
𝑗 | Z

1, 𝑆 = 𝑠𝑘 ) ≠ 𝑃 (𝑋 2
𝑗 | Z

2, 𝑆 = 𝑠𝑘 ′ )
which holds under detectable selection. Hence, our test 𝑇 will detect the difference for 𝑋 𝑗 given enough data from 𝐸1, 𝐸2 and reject
merging.

(2) For the induction step, we can assume that 𝐶 (𝐸𝑖′ ) = 𝐶 (𝐸𝑖′′ ) for all 𝑖′, 𝑖′′, and apply the above pairwise argument to 𝐸𝑖+1 and each 𝐸𝑖′ .

Corollary A.4 (Consistency of model merging). Given a consistent DAG search algorithm A and score 𝐿, Continent is consistent under

Assumption 3.4, so that

lim
|𝐷𝑛 |→∞

𝑃 (𝐺𝑟 ∼ 𝐺𝑟∗) = 1 for all 𝑟 ∈ {1, . . . , 𝑅} .

Proof. Consider the estimated model Ĝ = {𝐺1, . . . ,𝐺𝑅̂} and subsets Π̂(𝐷) = {𝑋 1, . . . , 𝑋 𝑅̂} that we obtain with Continent at time step 𝑛.
By the previous theorem, we know that episodes from different contexts were not merged incorrectly, 𝑋𝑟 ⊆ 𝑋 ∗𝑟 ′ for some 𝑟 ′ for each 𝑟
where 𝑅 ≤ 𝑅, which we write shorthand as Π̂(𝐷) ⊆ Π∗ (𝐷). In case 𝑅 < 𝑅, we need to consider any remaining merges among sets in 𝑋𝑟 . If
the assumptions of Thm. 3.5 hold, then we can use

min
Π (𝐷 ),Π̂ (𝐷 )⊆Π (𝐷 )

|Π (𝐷 ) |∑︁
𝑟=1

min
𝐺𝑟

𝐿(𝑋𝑟 ;𝐺𝑟 ) .

The above will be minimized for Π∗ (𝐷) and 𝐺𝑟 ∼ 𝐺𝑟∗ for each 𝑟 as it considers a subset of the partitions that Thm. 3.5 considers. Hence
minimizing 𝐿 is a consistent way to discover the remaining merges. □
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B ALGORITHM

In this section, we include the pseudocode of the components of Continent .

Algorithm 3: Update (G, 𝐸,A,T)
input : episode 𝐸,

causal model G,
causal discovery algorithm A with score 𝐿,
residual test T

output : updated causal model G
1 accepted← False
2 foreach 𝐺𝑟 over data 𝐷 in G do

3 if TestResidualEq (𝐺𝑟 , 𝐸, 𝐷,T) then
4 accepted← True
5 𝐷 ← 𝐷.stackData (𝐸)
6 end

7 end

8 if not accepted then

9 𝐺 ← A.Learn(𝐸)
10 G = G ∪ {𝐺}
11 end

12 return G

Algorithm 4: Merge (G,A,T)
input : causal model G,

causal discovery algorithm A with score 𝐿,
residual test T

output : updated causal model G
1 repeat

2 foreach 𝐺 over data 𝐷 in G do

3 𝐷★← 𝐷

4 𝐺★← 𝐺

5 𝐿★← 𝐺 .Score(𝐷)
6 foreach 𝐺 ′ over data 𝐷′ in G not seen yet do

7 if not TestResidualEq (𝐺 ′, 𝐷, 𝐷′,T) continue;
8 𝐷∪ = 𝐷 ∪ 𝐷′
9 𝐺∪ ← A.Learn(𝐷∪)

10 𝐿∪ ← 𝐺∪.Score(𝐷∪)
11 if TestScoreDiff (𝐿∪, 𝐿★) then
12 𝐷★← 𝐷∪

13 𝐿★← 𝐿∪

14 𝐺★← 𝐺∪

15 end

16 end

17 if 𝐺★
is not 𝐺 then

18 replace corresponding 𝐺,𝐺 ′ with 𝐺∪ in G
19 end

20 end

21 until convergence;
22 return G
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